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NCCI’S 2007 HAZARD GROUP MAPPING 
 

by John P. Robertson 
 

ABSTRACT 
 
At the beginning of 2007, the NCCI implemented a new seven-hazard-group system, 
replacing the previous four-hazard-group system.  This article describes the analysis that 
led to the assignment of classes to the new seven hazard groups. 

 
1. INTRODUCTION 

 
A hazard group is a collection of workers compensation classifications that have 

relatively similar expected excess loss factors over a broad range of limits.  At the 
beginning of 2007, the National Council on Compensation Insurance (NCCI) 
implemented a new seven-hazard-group system, replacing the previous four-hazard-
group system.  The new hazard groups are not simply a subdivision of the previous four; 
they are a substantially different mapping of classes to hazard group.  This article 
describes the analysis that led to the assignment of classes to the new seven hazard 
groups.   

 
Under the previous NCCI four-hazard-group system, the bulk of WC exposure in 

NCCI states was concentrated in two hazard groups, as can be seen in Table 1. 
 

Table 1 
Distribution of Classes by Prior Hazard Group 

NCCI 
Hazard 
Group 

Number of 
Classes 

Premium 
(billions) 

% of Total 
Premium 

I 38 $1.3 0.9% 
II 428 $67.2 45.6% 
III 318 $75.3 51.1% 
IV 86 $3.6 2.5% 

        
In our analysis, we considered whether a finer delineation would be possible, and 

what might be the optimal number of hazard groups.  Apart from those considerations, 
hazard group assignments should be reviewed periodically because of changes over time 
in the insurance industry, technology, workplaces, and the evolution of the classification 
system and Workers Compensation infrastructure.  The previous review had been done 
in 1993. 
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Prior Work 
 
The prior NCCI hazard groups were developed by first identifying seven variables 

based on relative claim frequency, severity, and pure premium, which were thought to be 
indicative of excess loss potential [3].  These variables were the ratios of class to 
statewide weighted average: 
 

1. serious to total claim frequency ratio 
2. serious indemnity severity  
3. serious medical severity 
4. serious severity, including medical 
5. serious to total indemnity pure premium ratio 
6. serious medical to total medical pure premium ratio 
7. serious pure premium to total pure premium ratio. 

 
Because of the correlation between the severity variables and the pure premium 

variables the above seven variables were reduced to just the first, fourth, and last 
variables.  A principal components1 analysis was then done to determine the linear 
combination of these variables that maximized the proportion of the total variance 
explained by this linear combination.  The linear combination so identified is called the 
first principal component and is the single variable that was used to sort classes into 
hazard groups.  Determination of the optimal number of hazard groups was outside the 
scope of that study and so the number of hazard groups remained unchanged at four. 
 

A very different approach was employed by the W.C. Insurance Rating Bureau of 
California (WCIRB) [4].  The WCIRB’s objective was to group classes with similar loss 
distributions.  They used two statistics to sort classes into hazard groups.  The first 
statistic was the percentage of claims excess of $150,000.  This statistic was thought of as 
a proxy for large loss potential.  The second statistic measured the difference between the 
class loss distribution and the average loss distribution across all classes.  The different 
hazard groups corresponded to different ranges of these two statistics.  The results were 
checked by using cluster analysis on these two variables. 
 
Overview 
 

Our approach owes much to the prior work on the subject, yet it is quite distinct. 
 
We sorted classes into hazard groups based on their excess ratios rather than proxy 

variables.  As shown in Corro and Engl [5], a distribution is characterized by its excess 
ratios and so there is no loss of information in working with excess ratios rather than with 
the size of loss density or distribution function.  Section 2 describes how we computed 
class-specific excess ratios. 

 
Section 3 describes how we used cluster analysis to group classes with similar excess 

ratios, and how we determined that seven is the optimal number of hazard groups.  
                                                 
1 See Johnson and Wichern [2] for a discussion of Principal Components. 
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In section 4 we compare the new hazard group assignments with the prior 
assignments. 

 
Following the analytic determination of hazard groups, the tentative assignments 

were reviewed by several underwriters, and, based on this input, NCCI changed some 
assignments; we describe this in section 5. 

 
Finally, section 6 recaps the key ideas of this study and the key features of the new 

assignments.  
 
2. CLASS EXCESS RATIOS 

 
Gillam [6] describes in detail the NCCI procedure for computing excess ratios by 

hazard group for individual states.  An excess ratio or excess loss factor (ELF) is the ratio 
of losses excess of a given limit to total losses.2  In the NCCI procedure, each ELF for a 
state and hazard group is a weighted average of ELFs by injury type specific to the state 
and hazard group.  The ELFs for an injury type for a state and hazard group are derived 
from ELFs for the injury type in the state, adjusted to the estimated mean loss in the 
hazard group in the state.  Injury types used by NCCI are Fatal, Permanent Total, 
Permanent Partial, Temporary Total, and Medical Only. 
 

To put this in mathematical terms, let Xi be the random variable giving the amount of 
loss for injury type i in the state, and let Xi have density function fi(x) and mean µi.  Let Si 
be the normalized state excess ratio function for injury type i; that is 
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where gi(x)= µi fi(µi x) is the density function of the normalized losses Xi/ µi.  For a hazard 
group j, the overall excess ratio Rj(L) at limit L is  

 
∑=

i
jiijij LSwLR )/()( ,, µ ,                                                (1) 

 
where wi,j is the percentage of losses due to injury type i in hazard group j, so ∑ =

i
jiw 1, , 

and µi,j is the average cost per case for injury type i in hazard group j. 
 

In the same way we can compute countrywide excess ratios for a given class by just 
knowing the weights and average costs per case by injury type for a class.  We based 
these on the most recent five years of data as of April, 2005. This included claim counts 
and losses by injury type for the states where NCCI collects such data. Losses were 
developed, trended, and brought on-level to reflect changes in workers compensation 

                                                 
2 Another common definition of excess loss factor is as the ratio of losses excess of a given limit to 
premium.  We are concerned only with ratios of losses excess of given limits to total losses. 
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benefits.  With some minor state exceptions, the same classes apply in all states.  As such, 
we could estimate class excess ratios on a countrywide basis.  Thus for each class, c, we 
had a vector  
 

Rc = (Rc(L1), Rc(L2),…, Rc(Ln)) 
 

of excess ratios at certain loss limits L1, L2, ..., Ln. 
 

The credibility to assign to each class excess ratio vector is considered in the next 
subsection, and selection of the loss limits to use in the analysis is discussed in Section 3. 
 
 
Credibility 
 

In the prior review, the credibility given to a class was  
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nz ,                                                    (2)                               

 
where n is the number of claims in the class and k is the average number of claims per 
class.  This gives a class with the average number of claims 75% credibility and a class 
with at least twice the average number of claims full credibility. Figure 1 shows the 
credibility produced by this formula by size of class.  
 

Figure 1 
Class Code Credibility 
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The fully credible classes have over 70% of the total premium as can be seen in Table 2.  
 

Table 2 
Distribution of Classes by Credibility 

 

Credibility Range 
Claims per 

Year 
Number of 

Classes 
% 

Premium 
0% ≤  z  < 10% 0-237 355 1.2% 
10% ≤  z  < 20% 238-511 89 1.3% 
20% ≤  z  < 30% 512-831 61 1.6% 
30% ≤  z  < 40% 832-1209 56 2.7% 
40% ≤  z  < 50% 1210-1662 46 2.5% 
50% ≤  z  < 60% 1663-2216 34 2.5% 
60% ≤  z  < 70% 2217-2909 46 4.8% 
70% ≤  z  < 80% 2910-3799 35 4.3% 
80% ≤  z  < 90% 3800-4987 29 4.0% 
90% ≤  z  < 100% 4988-6649 18 3.2% 

z  = 100% ≥ 6650 101 71.8% 
Total  870 100.0% 

 
 

That the largest classes have a disproportionate share of the claims can be seen in 
Figure 2, where the classes with the greatest number of claims are to the left.   
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Figure 2 
Distribution of Classes by Claim Count 
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Indeed the distribution of claims per class is very highly skewed, as can be seen in 
Figure 3. 

Figure 3 
Histogram of Number of Claims by Class 
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Figure 4 expands the first bar in Figure 3, and shows the persistency of the skewness. 
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Figure 4 
Detail of Histogram of Number of Claims by Class 
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And Figure 5 further expands the first bar in Figure 4 revealing the same general pattern. 
 

Figure 5 
Detail of Histogram of Number of Claims by Class 
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The average number of claims per class is nearly ten times the median.  We thus 
considered using the median rather than the mean for k in equation (2).  This would have 
resulted in a very large increase in credibility as shown in the Figure 6. 
 
 

Figure 6 
Comparison of Credibility Formulas 
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We considered several other variations on formula (2) as well.    Because medical only 
claims have almost no impact on the ELFs at the published limits, we considered 
excluding all medical only claims.  Taking that a step further, we looked at including 
only serious claims.  We also considered taking k in formula (2) to be the mean number 
of claims over only those classes with some minimal number of claims.   

 
In addition, we considered basing credibility on various square root rules.  We 

considered a simple square root rule of the form 

384
nz = , 

where n is the number of claims in a class, and z is capped at 1.  The full credibility 
standard of 384, given in Hossack, Pollard, and Zehnwirth [10, page 159], corresponds to 
a 95% chance of the actual number of claims within 10% of the expected number of 
claims.  For the determination of ELFs, serious claims (Fatal, Permanent Total, and major 
Permanent Partial) are more important than non-serious claims, so we looked at the 
following variation on the square root rule above 
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where  
nF  = the number of fatal claims in the class  
NF  = the number of fatal claims in all classes  
nM = the number of permanent total and major permanent partial claims in the 

class 
NM = the number of permanent total and major permanent partial claims in all    

classes 
nm = the number of minor permanent partial and temporary total claims in the 

class 
Nm = the number of minor permanent partial and temporary total claims in all    

classes. 
 

We also considered varying the full credibility standard by injury type with the 
following credibility formula 
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where 
ns = the number of serious claims in the class 
Ns = the number of serious claims in all classes 
n = the total number of claims in the class 
N = the total number of claims in all classes. 

        
In the end, none of the alternatives considered seemed compelling enough to warrant 

a change and the results did not seem to depend heavily on the credibility formula; 
consequently we retained formula (2) for computing credibility. 
 

For the complement of credibility we used the excess ratios corresponding to the 
current hazard group of the class.  More precisely, for each class c we have a vector of 
excess ratios 

Rc = (Rc(L1), Rc(L2),…, Rc(Ln)) 
 
and a credibility z.  We also have a vector of excess ratios for the hazard group HG 
containing the class c (which can be determined, as above, as a loss weighted sum over 
vectors for classes in HG) 
 

RHG = (RHG(L1), RHG(L2),…, RHG(Ln)). 
 
We now associate to each class a credibility-weighted vector of excess ratios 
 

zRc + (1-z)RHG. 
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It is these credibility-weighted vectors of excess ratios that we use in the cluster analysis 
described in the next section. 
 
3. ANALYTIC DETERMINATION OF THE NEW HAZARD GROUPS 
 
The fundamental analytic method used to determine the new hazard groups is Cluster 
Analysis.  This is described in more detail below, but is a way to group classes with 
similar ELFs. 
 
Selection of Loss Limits 
 

The class excess ratio is a function of the loss limit, so it was necessary to select the 
attachment points to use in the analysis. We used limits of 100, 250, 500, 1000, and 5000, 
in thousands of dollars. Because excess ratios at different limits were highly correlated, 
five limits were thought to be sufficient. We considered using fewer limits but decided 
that it was better to use five limits to cover the range commonly used for retrospective 
rating. 

 
We began by considering the 17 limits for which NCCI published excess loss factors 

before 2005.  These limits, in thousands of dollars, were: 25, 30, 35, 40, 50, 75, 100, 125, 
150, 175, 200, 250, 300, 500, 1000, 2000, and 5000. We modified this list by dropping 
$300,000 and adding $750,000.  We reduced this to the five selected attachment points 
based primarily on two considerations: 

• ELFs at any pair of excess limits are highly correlated across classes, 
especially when the ratio of the limits is close to 1. 

• Limits below $100,000 are heavily represented in the list of 17 limits. 
 
The correlations were computed using only the 162 classes with at least 75% 

credibility.  Classes with small credibility have estimated ELFs close to those for the 
prior overall hazard group.  Including the low-credibility classes would skew the 
correlations towards those of the overall hazard groups. 

 
Even among the five selected limits, correlations between ELFs for pairs of limits are 

very high, as can be seen in Table 3.    
 

Table 3 
Correlations Among Excess Ratios at Selected Limits 

Limit 100,000 250,000 500,000 1,000,000 5,000,000 
100,000  0.992 0.973 0.935 0.824 
250,000   0.994 0.969 0.879 
500,000    0.990 0.925 

1,000,000     0.968 
5,000,000      
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Each of the 12 limits not used has a correlation coefficient of at least 0.9882 with a 
limit that was used, as can be seen in Table 4. 

 
Table 4 

Correlations of ELFs for Pairs of Limits 

Limits not 
Selected 

Most Correlated 
Limit of the Five 

Selected 
Correlation 
Coefficient 

25,000 100,000 0.9882 
30,000 100,000 0.9907 
35,000 100,000 0.9926 

40,000 100,000 0.9942 
50,000 100,000 0.9965 
75,000 100,000 0.9993 

125,000 100,000 0.9996 
150,000 100,000 0.9985 
175,000 250,000 0.9987 

200,000 250,000 0.9995 
750,000 1,000,000 0.9982 

2,000,000 1,000,000 0.9919 
 

 
Although we ultimately used five limits, we experimented by clustering with different 

limits. We found that the hazard group assignments resulting from five limits were quite 
similar to those resulting from 17. When mapping the classes to seven hazard groups, 
only 68 out of 870 classes were assigned to different hazard groups and these accounted 
for just 5.5% of the total premium. 
 

To see whether five limits were more than needed for the analysis, we tried clustering 
the classes using only a single limit. In one instance we used $100,000 and in another we 
used $1,000,000.  Figures 7 and 8 compare those single limit assignments with clustering 
using the five-limit approach.  In both cases, the results differed from the five-limit case, 
markedly so when $1,000,000 was used. 
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Figure 7 
Clustering using $100,000 Limit Compared to Five Selected Limits 
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Figure 8 
Clustering using $1,000,000 Limit Compared to Five Selected Limits 

(The number of classes that moved is shown above each bar.) 
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This indicates that too much information is lost by dropping down to one limit. 
Retrospectively rated policies are purchased over a range of attachment points and no 
single limit captures the full variability in excess ratios. 
 

We used principal components analysis to enhance the clustering investigation. The 
first two principal components of the five limits retained over 99% of the variation in the 
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data. While this might suggest that fewer limits could have been used, we decided to use 
five limits in order to cover the range of limits commonly used in retrospective rating. 
The distance between two classes in principal components space does not have the same 
simple interpretation as it does in excess ratio space. However principal components 
analysis allows one to project a five-dimensional plot onto two dimensions.  Clustering 
using the five limits and plotting the resulting hazard group assignments using the first 
two principal components showed that the clusters were well separated and that outliers 
were easily identified.  In our view, this confirmed the success of the five-dimensional 
clustering. 

  
Metrics 
 

The objective of assigning classes to hazard groups is to group classes with similar 
vectors of excess ratios.  This raises the question of how to determine how similar or 
“close” two vectors are.  The usual approach is to measure the distance between the 
vectors.  If 

x = (x1, x2, …, xn) 
 

and  
y = (y1, y2, …, yn) 

 
are two vectors in ℝn, then the usual Euclidean, or L2, distance between x and y is 
specified as 
 

( )∑
=

−=−
n

i
ii yxyx

1

2
2

. 

 
This metric is used extensively in statistics and is what we used.  In linear regression this 
metric penalizes large deviations.  That is, one big deviation is seen to be worse than 
many small deviations. 
  

There are many other metrics.  Perhaps the second most common distance function is 
the L1 metric which specifies  
 

∑
=

−=−
n

i
ii yxyx

1
1 . 

 
Here a large deviation in one component gets no more weight than many small 
deviations.  The intuitive rationale for using this metric is that it minimizes the relative 
error in estimating excess premium.  If Rc(L) is the hypothetically correct excess ratio at a 
limit of L for a class c and the premium on the policy is P then the excess premium is 
given by )(LRPLRP c⋅⋅ , where PLR denotes the permissible loss ratio.  But in practice 
the class excess ratio is approximated by the hazard group excess ratio RHG(L).  The 
relative error in estimating the excess premium is then 
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If we assume that each loss limit is equally likely to be chosen by the insured, then the 
expected relative error in estimating the excess premium is given by 
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which is proportional to the L1 distance between the two excess ratio vectors. 
  

Our analysis was not very sensitive to whether the L1 or L2 metric was used and we 
preferred the more traditional L2 metric. 

 
Standardization 
 

When clustering variables measured in different units, standardization is typically 
applied to prevent a variable with large values from exerting undue influence on the 
results.  Standardization ensures that each variable has a similar impact on the clusters.  
Duda and Hart [12] point out that standardization is appropriate when the spread of 
values in the data is due to normal random variation, however “it can be quite 
inappropriate if the spread is due to the presence of subclasses.  Thus, this routine 
normalization may be less than helpful in the cases of greatest interest.”   
 
     We considered two common approaches to standardization. The usual approach is to 
subtract the mean and divide by the standard deviation of each variable. For example, if 

nxxx ,,, 21 K  are the sample values of some random variable, with sample mean x , and 
sample standard deviation s, then the standardized values are given by 

s
xx

z i
i

−
= . 

An alternative standardization method depends on the range of observations. Under this 
approach we would take 

ii

ii
i xx

xx
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minmax
min
−

−
= . 

 
     We conducted two cluster analysis trials in which we standardized according to the 
approaches described above. In each case we clustered the classes into seven hazard 
groups. Both trials resulted in hazard groups that were not very different from those 
produced without standardization. 
 
     Further, two issues were apparent with regard to standardizing in our particular 
analysis. First, excess ratios at different limits have a similar unit of measure, which is 
dollars of excess loss per dollar of total loss. That is, excess ratios share a common 
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denominator. Any attempt to standardize would have resulted in new variables without a 
common unit interpretation. Second, all excess ratios are between zero and one. Some 
standardization approaches would have resulted in standardized observations outside this 
range. 
 
     Another consideration is that excess ratios have a greater range at lower limits. 
Without standardization, the excess ratios at lower loss limits have more influence on the 
clusters than do those at higher limits. This is not undesirable because excess ratios at 
lower limits are based more on observed loss experience than on fitted loss distributions 
(see Corro and Engl [5]). Even on a national basis, there are few claims with reported 
losses above $5,000,000, but there are many more claims above $100,000. Greater 
confidence can be placed in the relative accuracy of excess ratios at lower limits because 
they are based on a greater volume of data. 
 
     In summary, the determination was made not to standardize because standardization 
would have eliminated the common denominator and it would have led to increased 
emphasis on higher limits. Our clustering algorithm used the L2 metric and 
unstandardized credibility-weighted class excess ratios at the five selected loss limits: 
$100,000, $250,000, $500,000, $1,000,000 and $5,000,000. Premium weights were used 
to cluster the classes, as will be discussed in the next section. 

 
Cluster Analysis 

 
Given a set of n objects, the objective of cluster analysis is to group similar objects.  

In our case, we wanted to group classes with similar vectors of excess ratios, where 
similarity is determined by the L2 metric.  At this stage the number of clusters is taken as 
given.  Typically partitions of the objects into 1, 2, 3, …, n clusters are considered.  Non-
hierarchical cluster analysis simply seeks the best partition for any given number of 
clusters.  In hierarchical cluster analysis the partition with k + 1 clusters is related to the 
partition with k clusters in that one of the k clusters is simply subdivided to get the k + 1 
element partition.  Thus if two objects are in different clusters in the k cluster partition 
then they will be in different clusters in all partitions with more than k elements.  This 
places a restriction on the clusters that can be sensible in some contexts.  Our approach 
was non-hierarchical. 

 
Optimality of k-means 
 

The clustering technique we used is called k-means.  For a given number, k, of 
clusters, k-means groups the classes into k hazard groups so as to minimize 
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is the average excess ratio vector for the ith hazard group and |HGi| denotes the number of 
classes in hazard group i.  Theoretically there is a difference between the hazard group 
excess ratio vector, 

iHGR , computed using (1), and the hazard group centroid, iR , but in 
practice this difference is very small.   
 

Hazard groups determined by k-means have several desirable optimality properties.  
First, they maximize the following statistic 
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c
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is the overall average excess ratio vector, with ∑= iHGC  being the total number of 
classes.  Formula (4) is analogous to the R2 statistic in linear regression.  It gives the 
percentage of the total variation explained by the hazard groups. 
 

A second way to evaluate hazard groups is based on the traditional concepts of within 
and between variance.  We would like the hazard groups to be homogeneous and well 
separated.  Thus we would like to minimize the within variance and maximize the 
between variance.  We show now that using k-means accomplishes both.   
 

Instead of considering a single excess ratio for each class, we have a vector of excess 
ratios.  Thus we have not a single random variable corresponding to a single loss limit, 
but rather a random vector, with one random variable for each loss limit, from which we 
get a variance-covariance matrix.  If Xi is the random variable for the excess ratio 
function at the ith loss limit, Li, across classes c, then the observed values are the Rc(Li).  
The variance-covariance matrix of the random vector X = (X1, X2,…, Xn) is given by 
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where 
 

[ ]))(( kkiiik XXE µµσ −−=  
 
is the covariance of Xi and Xk and [ ]ii XE=µ .  If we regard X as a 1 x n matrix then 
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)]()[( µµ −−=Σ XXE T , 

 
where ),,,( 21 nµµµµ K=  and (X – µ)T is the transpose of (X – µ).     
         

In practice the variance-covariance matrix is not known, but must be estimated from 
the data, i.e., the vectors 
 

Rc = (Rc(L1), Rc(L2),…, Rc(Ln)). 
 
Let  
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where C is the total number of classes, and let 
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Then the sample covariance of the ELFs at Li and Lk  is  
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and the sample variance-covariance matrix is given by 
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One way to generalize the concept of variance to the multivariate context is to consider 
the trace of S 

nnsssS +++= L2211)( trace . 
 
This is just the sum of the sample variances of each variable and is called the total sample 
variance. 

 
We let  

 
( ) ( )xRxRCST c

c

T
c −−== ∑ . 
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The matrix T is proportional to the variance-covariance matrix for the whole data set.  It 
is called the dispersion matrix, and is the matrix of sums of squares and cross products.    
We can proceed similarly within each hazard group and define 
 

( ) ( )ic
HGc

T
ici xRxRW

i

−−= ∑
∈

. 

 
If we let  

)()( xxxxHGB i
T

iii −−= , 
 

then it can be shown (see Späth [7]) that 
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We then let  

∑
=

=
k

i
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1
. 

 
This is the pooled within group dispersion matrix.  For the between variance we let 
 

∑
=

=
k

i
iBB

1
. 

 
This is the weighted between group dispersion matrix.  We then have  
 

T = B + W. 
 
This means, roughly that the total variance is the sum of the between variance and the 
within variance.  Taking the trace we get 
 

trace(T) = trace(B) + trace(W). 
 
Thus the total sample variance is the sum of the between and within sample variance.  
Because trace(T) is constant, maximizing trace(B) is equivalent to minimizing trace(W), 
which is what k-means cluster analysis accomplishes. 

 
Weighted k-means 
 

As observed in section 2, some classes are much larger than others.  To avoid letting 
the small classes have an undue influence on the analysis, we weighted each class by its 
premium.  In simplest terms, this amounts to counting a class twice if it has twice as 
much premium as the smallest class.  So instead of minimizing the expression in (3), we 
instead minimized      
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where wc is the percentage of the total premium in class c.  We used the premium-
weighted centroids as well, that is 
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Optimal Number of Hazard Groups 

 
So far, we have discussed the task of determining clusters when the number of 

clusters is given.  We now address how to tell whether one number of clusters performs 
better than another, e.g., whether seven clusters works better than six or eight. 

 
Various test statistics can be used to help determine the optimal number of clusters. 

The procedure is to compute the test statistic for each number of clusters under 
consideration and then identify the number of clusters at which the chosen statistic 
reaches an optimal value (either a minimum or a maximum, depending on the particular 
test statistic being used). Milligan and Cooper ([8], [9]) tested such procedures to 
determine which statistics were the most reliable. 
 

Milligan and Cooper [8] performed a simulation to test 30 procedures. The simulated 
clusters were well separated from each other and they did not overlap. For each simulated 
data set, the true number of clusters was known, and they computed the number of 
clusters indicated by each method of determining the optimal number of clusters. The 
methods were ranked according to the number of times that they successfully indicated 
the correct number of clusters. 

 
They noted that their simulation was idealized but that “It is hard to believe that a 

method that fails on the present data would perform better on less defined structures” 
([8], page 161).  Hence, although the hazard group data had both noise and overlap, it 
was useful to refer to Milligan and Cooper [8] to determine which methods to rule out. 

 
In a later study, Cooper and Milligan [9] conducted tests that were more relevant to 

our application because random errors were added to the simulated data. That study 
found that the two best performing methods in the error-free scenario were also the best 
with errors ([9], page 319). The best performing method is due to Calinski and Harabasz. 
Milligan and Cooper ([8], page 163) define the Calinski and Harabasz statistic as 

 
( )
( ) )( / trace

)1( / trace
knW
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−
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where n is the number of classes and k is the number of hazard groups, B is the between 
cluster sum of squares and cross product matrix, and W is the within cluster sum of 
squares and cross product matrix. A higher value of this statistic indicates better clusters 
because that corresponds to higher between clusters distances (the numerator) and lower 
within cluster distances (the denominator).  This test is also known as the Pseudo-F test 
due to its resemblance to the F-test of regression analysis, often used to determine 
whether the explanatory variables as a group are statistically significant.  
 

Another test that ranked high in the Milligan and Cooper testing was the Cubic 
Clustering Criterion (CCC).  This test compares the amount of variance explained by a 
given set of clusters to that expected when clusters are formed at random based on data 
sampled from the multi-dimensional uniform distribution. If the amount of variance 
explained by the clusters is significantly higher than expected then a high value of the 
CCC statistic will result, indicating a high-performing set of clusters. An optimum 
number of clusters is identified when the test statistic reaches a maximum (Milligan and 
Cooper [8], page 164). 
 

Milligan and Cooper [8] found that the Calinski and Harabasz test produced the 
correct number of clusters for 390 data sets out of 432. The CCC test produced the 
correct value 321 times.  We could not use some of the other methods that ranked high 
because they were only applicable to hierarchical clustering, or for other reasons. 

 
In a SAS Institute technical report, Sarle [11] noted that the CCC is less reliable when 

the data is elongated (i.e., variables are highly correlated).  Excess ratios are correlated 
across limits, so we gave the CCC results less weight than the Calinski and Harabasz 
results. 

 
We performed cluster analyses for four to nine hazard groups.  There were four 

hazard groups in the prior NCCI system, and we saw no reason to consider any smaller 
number.  Implementing ten or more hazard groups would be substantially more difficult 
than implementing nine or fewer, because having 10 or more requires an additional digit 
fro coding hazard groups.  Testing up to nine was appropriate because the Workers 
Compensation Insurance Rating Bureau of California uses nine hazard groups [4]. 

 
In the first phase of our cluster analysis, we assigned classes and calculated the two 

test statistics for each number of groups under consideration.  Figure 9 shows that the 
Calinski and Harabasz statistic indicated that the best number of hazard groups was 
seven. Figure 10 shows that the CCC statistic suggested nine hazard groups. 
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Figure 9 
Indicated Number of Hazard Groups 
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Figure 10 
Indicated Number of Hazard Groups 
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But nine hazard groups produced crossover, meaning that the hazard group excess 
ratio for a higher hazard group was lower than that for a lower hazard group at some high 
loss limit.  In our opinion, this suggested that more clusters were being used than could 
accurately be distinguished. 
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As can be seen in Table 2, most of the premium is concentrated in the largest classes 
with the highest credibility.  We were concerned that the indicated number of hazard 
groups in the analysis above could have been distorted by the presence of hundreds of 
non-credible classes.  In the second phase of our cluster analysis, we applied the tests to 
determine the optimal number of clusters using large classes only. 

 
In one scenario, we applied the Calinski and Harabasz and CCC tests using only those 

classes with credibility greater than or equal to 50 percent. In a second scenario, we 
applied the tests using only fully credible classes. As shown in Figure 11, the indicated 
number of hazard groups was seven for both tests in both scenarios. 

 
Figure 11 

Statistics for Various Numbers of Hazard Groups 
Only Classes with at Least 50 Percent Credibility 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
In summary, we used two test statistics in three scenarios for a total of six tests. Seven 

hazard groups was the indicated optimal number in five of these six tests. The exception 
was the scenario in which all classes were included, where the CCC test indicated that 
nine hazard groups were optimal. But there are four reasons why this exception received 
little emphasis: 

• Milligan and Cooper ([8], [9]) found that the Calinski and Harabasz procedure 
outperformed the CCC procedure. 

• The CCC procedure deserves less weight when correlation is present, which 
was the case in all of our scenarios. 

• The selection of the optimal number of clusters ought to be driven by the large 
classes where most of the experience is concentrated. The large classes have 
the highest credibility and so the most confidence can be placed in their 
excess ratios. 

• There is crossover in the nine hazard groups, and we don’t think the data 
supports hazard groups with crossover. 
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 We concluded that seven hazard groups were optimal.  These are denoted A to G, 
with Hazard Group A having the smallest ELFs and Hazard Group G having the largest. 
 
Alternate Mapping to Four Hazard Groups 
 

We recognized that some insurers would not be able to adopt the seven hazard group 
system immediately because they needed additional time to make the necessary systems 
changes. Therefore we produced a four hazard group alternative to supplement the seven 
hazard group system. We chose to collapse the seven hazard groups into four by 
combining Hazard Groups A and B to form Hazard Group 1, combining C and D to form 
2, combining E and F to form 3, and letting Hazard Group 4 be the same as G. Having an 
alternate mapping to four hazard groups simplifies comparisons between the prior and 
new mappings as well. 
 

Prior to choosing this simple scheme we considered other alternatives. We tried using 
k-means cluster analysis to map the seven hazard group centroids into four. This 
approach resulted in a hazard group premium distribution that was not homogeneous 
enough. Another approach we considered was using cluster analysis to group the classes 
directly into four hazard groups. That approach yielded reasonable results, but it resulted 
in a non-hierarchical collapsing scheme, i.e., the seven hazard groups were not a result of 
subdividing the four hazard groups. The hierarchical collapsing scheme we chose has this 
feature, which allows users to know which of the four hazard groups a class is in based 
on knowing that class’ assignment in the seven hazard group system. 

 
The new four hazard group system is intended to be temporary.  The four hazard 

group system is in place only to ensure that all carriers have sufficient time to make the 
transition to seven hazard groups. 
 
4. COMPARISON OF NEW MAPPING WITH OLD 
 
Distribution of Classes and Premium 
 

The bulk of the exposure was concentrated in two of the hazard groups prior to our 
review. Hazard Groups I and IV contained a small percentage of the total premium. 
Hazard Groups II and III, on the other hand, contained 97 percent of the total premium 
(see Table 1). We knew that a more homogeneous distribution of premium by hazard 
group would improve pricing accuracy. When discussing the new hazard groups in this 
section we will focus on the mapping that resulted directly from the statistical analysis. 
Later on, as will be discussed in the underwriting review subsection, numerous classes 
were reassigned among the groups based on feedback gathered in our survey of 
underwriting experts. These changes are not reflected in Figures 12 to 20. 

 
Figures 12 and 13 compare the prior mapping to the collapsed new mapping based on 

the distribution of classes and premium. 
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Figure 12 
Prior Mapping vs. Collapsed New Mapping 
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Figure 13 

Prior Mapping vs. Collapsed New Mapping 
Percent of Premium by Hazard Group 
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Hazard Group 1 has a large number of classes and a substantial portion of total premium 
in contrast to Hazard Group I. Hazard Groups 2 and 3 have become slightly smaller than 
before although they are still large. In the prior mapping Hazard Groups II and III each 
had over 45 percent of the premium, but in the new mapping, none of the four groups has 
as much as 40 percent. This refinement allows for improved homogeneity of classes 
within each hazard group. Hazard Group 4 has retained a similar number of classes but it 
has more premium than Group IV.  
 

Figure 14 shows that most of the classes and premium remained in the same hazard 
group when assigned to the new four Hazard Groups. 
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Figure 14 
Comparison of Old with New Assignment to Four Hazard Groups 

       (The number of classes that moved is shown above each bar.) 
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Among those classes that did move, the great majority (300 classes and 37 percent of the 
premium) moved down one hazard group. Most of this movement was from Hazard 
Group II to 1. The movements of classes and premium are detailed in Table 5. 
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Table 5 
Comparison of Distributions of Classes Between 

 Prior and New Hazard Group Assignments 

Hazard Group I II III IV Total

Number of Classes 38 428 318 86 870
% Premium 0.9% 45.6% 51.1% 2.5% 100%

     Hazard Group
38 255 3 0 296

0.9% 25.4% 0.5% 0.0% 26.7%

0 164 41 0 205
0.0% 19.6% 11.8% 0.0% 31.4%

0 9 268 4 281
0.0% 0.6% 36.3% 0.2% 37.1%

0 0 6 82 88
0.0% 0.0% 2.6% 2.2% 4.8%4

N
ew

 M
ap

pi
ng

1

2

3

Prior Mapping

 
 
The table can be read vertically. For instance, among the 428 classes in Hazard Group II, 
255 were mapped into Hazard Group 1, 164 into Hazard Group 2, nine into Hazard 
Group 3, and none into Hazard Group 4. The 255 classes that moved from Hazard Group 
II into Hazard Group 1 comprised 25.4% of the total premium. A significant number of 
classes and amount of premium moved from Hazard Group III to 2. Three classes moved 
from III to 1. Just 15 classes moved up by one hazard group, making up three percent of 
the premium. Hazard Group 1 is so large primarily because of classes that entered it from 
Hazard Group II. Hazard Group 2 is quite different than Hazard Group II because many 
of the classes in 2 originated in III and many of the classes that were in II have moved 
into 1. 
 

The new seven hazard group assignment has a fairly homogenous distribution of 
classes and premium, as shown in Figure 15. 
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Figure 15 
Number of Classes and Percent of Premium in Each Hazard Group 
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This is a marked improvement over the prior mapping. In terms of premium, Hazard 
Group A is 11 times larger than Hazard Group I was. Hazard Group G is twice as large as 
Hazard Group IV was.  

 
Table 6 shows the distribution of classes to hazard groups based on their level of 

credibility.  Overall there were 162 classes with at least 75 percent credibility and 708 
classes with lower credibility.  Generally, within each hazard group most of the premium 
is due to highly credible classes but most of the classes have lower credibility.  Hazard 
Groups D and G are exceptions.  Hazard Group D has nearly equal numbers of high and 
low-credibility classes. In Hazard Group G, high and low-credibility classes have similar 
premium percentages. 
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Table 6 
Number of Classes with Given Credibility by Hazard Group 

 

Hazard Group Number of 
Classes % Premium Number of 

Classes % Premium

A 18 8.4% 37 0.9%
B 40 14.5% 201 2.8%
C 41 17.6% 119 3.6%
D 22 8.9% 23 1.3%
E 22 14.0% 202 4.4%
F 15 15.0% 42 3.7%
G 4 2.4% 84 2.4%

Total 162 80.9% 708 19.1%

162 Classes with 
Credibility     75%

708 Classes with 
Credibility < 75%

 
 

Although Hazard Groups B and E have far more classes than the other hazard groups, 
they do not have far more premium. The reason that they have the most classes with 
credibility less than 75 percent is that the complement of credibility is the prior hazard 
group excess ratio. For instance, the excess ratio of Hazard Group III at $100,000 was 
0.451 which is close to the excess ratio of Hazard Group E. Given a small class in Hazard 
Group III, the credibility-weighted excess ratio was likely to be close to the excess ratio 
of Hazard Group E.  
 
Range of Excess Ratios 
 

In Figure 16 each horizontal bar represents the range of credibility-weighted excess 
ratios within a particular hazard group. The vertical line within each bar represents the 
overall excess ratio for the hazard group.  

 
 

≥
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Figure 16 
Prior Mapping Excess Ratio Ranges at $100K 
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Among the classes in Hazard Group I, the excess ratios at $100,000 ranged from 0.254 to 
0.315.  In Hazard Group II, the excess ratios at $100,000 ranged from 0.223 to 0.451. 
Thus the range of Hazard Group I excess ratios was contained within that of Hazard 
Group II, indicating that Hazard Groups I and II were not as well-separated as might be 
desired.  The same behavior was observed at $1,000,000 as well.    
 

As shown in Figure 17, k-means clustering resulted in well-separated hazard groups. 
Because five dimensions were used, we could not avoid overlap in each dimension, but 
the excess ratio distribution is a noticeable improvement over the prior mapping. 
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Figure 17 
New Mapping Excess Ratio Ranges at $100K 
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The new mapping also shows a well-separated excess ratio distribution at $1,000,000 as 
shown in the Figure 18.  
 
 

Figure 18 
New Mapping Excess Ratio Ranges at $1M 
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Most of the exposure is concentrated in the largest classes, and so the hazard group 

excess ratios are highly sensitive to the placement of large classes. In Figures 16- 18, the 
range of excess ratios for each hazard group is calculated using all of the classes in that 
hazard group. 
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Figures 19 and 20 show that if ranges are computed using only those classes with at 
least 75 percent credibility, then the separation of hazard groups by excess ratios is quite 
strong at both $100,000 and $1,000,000.  

 
 

Figure 19 
New Mapping Excess Ratio Ranges at $100K 
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Figure 20 

New Mapping Excess Ratio Ranges at $1M 
Classes with at least 75% Credibility 

 

0.00 0.05 0.10 0.15 0.20

A

B

C

D

E

F

G

H
az

ar
d 

G
ro

up

Credibility-Weighted Class Excess Ratios at $1M

 
 
 



  3/17/09 

© Copyright 2009 National Council on Compensation Insurance, Inc. All Rights Reserved. 32

5. UNDERWRITING REVIEW 
 

After completing the cluster analysis, we conducted a survey of underwriters to solicit 
their comments on the proposed new mapping. The survey was sent to all members of 
NCCI’s Underwriting Advisory List (UAL), and included the draft mapping that resulted 
from the analytic determination of the hazard groups. The survey asked the underwriters 
to judge the hazardousness of each class based on the likelihood that a given claim would 
be a serious claim. We also pointed out that if the mix of operations in two classes was 
very similar then the two classes should probably be in the same hazard group.  
 

Members of the UAL recommended changes in the hazard group assignment for a 
third of the classes. We also received feedback from two underwriters on staff at NCCI. 
After the survey comments were compiled, a team consisting of NCCI actuaries and 
underwriters reviewed the comments from UAL members and decided on the final 
assignment for each class. When deciding whether to reassign a class, we considered 
whether the feedback on that class was consistent.  We considered the credibility of each 
class and placed more weight on the cluster analysis results for those classes with a large 
volume of loss experience. For each class we compared the excess ratios to the overall 
hazard group excess ratios and identified the nearest two hazard groups. 
 

Class 0030 illustrates the process used at NCCI to decide on the hazard group for 
each class. This is the class for employees in the sugar cane plantation industry and is 
only applicable in a small number of states.  This class 

• had 12% credibility, 
• was in Hazard Group III under the prior mapping, and 
• was assigned to Hazard Group E under the cluster analysis. 

 
An underwriter pointed out that Class 0030 has operations similar to Class 2021, 

which is for employees who work at sugar cane refining.  Class 2021 
• applies nationally, 
• had 31% credibility, 
• was in Hazard Group II under the prior mapping, 
• was assigned to Hazard Group C under the cluster analysis, and 
• prior to credibility weighting had excess ratios close to the overall excess ratios 

for Hazard Group D. 
Credibility weighting had reduced Class 2021’s excess ratios so that they were between 
the overall excess ratios of Hazard Groups C and D, because the prior assignment of 
Class 2021 had been to Hazard Group II. 

 
We concluded that Hazard Group D was the best choice for 2021 based on its excess 

ratios prior to credibility weighting and its mix of operations. We determined that 0030 
should be assigned to the same hazard group as 2021, so we also assigned Class 0030 to 
Hazard Group D. 
 

Underwriters made several other types of comment besides those comparing one class 
to another. For instance, they commented on the degree to which employees in a given 
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class are prone to risk from automobile accidents. They commented on the extent to 
which heavy machinery is used in various occupations and how much exposure there is to 
dangerous substances. 
 

Figure 21 displays the movements of premium and classes during the underwriting 
review under the collapsed new mapping. It shows that the overall effect of the 
underwriting review was to move a significant number of classes up to a higher hazard 
group. 
 

Figure 21 
Percent of Premium That Moved During the Underwriting Review 

(The number of classes that moved is shown above each bar.) 
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The majority of the classes that moved up one hazard group, 78 of them, moved from 
Hazard Group 1 to 2, while 20 classes moved from Hazard Group 2 to 3, and 23 classes 
moved from Hazard Group 3 to 4. 
 

6. CONCLUSION 
 
Our approach to remapping the hazard groups was founded on three key ideas: 
 

1. Computing excess ratios by class 
The data is too sparse to directly estimate excess ratios by both class and state.  
But countrywide excess ratios can be computed by class in the same way that 
hazard group excess ratios are computed.  This does not require separate loss 
distributions for each class.  The existing loss distributions by injury type can be 
used along with the usual scale assumption.  Thus all that is needed is average 
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costs per case by injury type and injury type weights for each class. 
    

2. Sorting classes based on excess ratios 
Rather than using indirect variables to capture the amorphous concept of “excess 
loss potential,” we used excess ratios directly because hazard groups are indeed 
used to separate classes based on excess ratios.  Because a loss distribution is in 
fact characterized by its excess loss function, this approach involves no loss of 
information.  By sorting classes based on excess ratios we achieve the goal of 
sorting classes based on their loss distributions as well.  
 

3. Cluster Analysis  
Problems involving sorting objects into groups are not unique to actuarial science.  
We were thus able to make use of a large statistical literature on cluster analysis.  
This provided an objective criterion for determining the hazard groups as well as 
the optimal number of hazard groups.  Our approach to determining the seven 
hazard groups was non-hierarchical because we wanted the best seven group 
partition and because hypothetical partitions into six hazard groups are not 
relevant in this context. 

 
As a result of our analysis the number of NCCI hazard groups was increased from 

four to seven.  The distribution of both premium and classes is much more even in the 
new hazard groups.  The highest hazard group is still relatively small.  The new seven 
hazard groups collapse naturally and hierarchically into four hazard groups.  Comparing 
the new four hazard groups with the old, over two-thirds of the classes, with nearly 60% 
of the premium, did not move at all.  This stability was largely a result of the fact that we 
used the old hazard group as a complement of credibility and there were a large number 
of classes with very little premium.  Of the classes that did move, the overwhelming 
majority moved down one hazard group. 
 

The new mapping was filed in mid-2006 to be effective with the first rate or loss cost 
filing in each state on or after January 1, 2007. The filing (Item Filing B-1403) was 
approved prior to the end of 2006 in all states in which NCCI files rates or loss costs. 
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