

The Source You Trust October 2025

By Patrick Coate, Valeria Lara, and David Colón

Remote Work and Workers Compensation Frequency

KEY FINDINGS

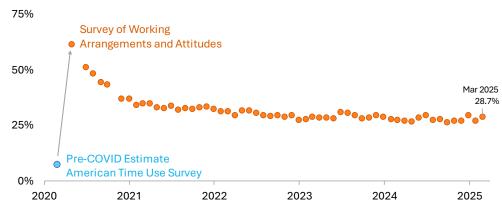
- Remote work has created a major and durable shift in the US work environment since the onset of the COVID-19 pandemic, primarily in office and clerical work. Currently, about 20–30% of US workers work remotely.
- We estimate that about half of all workers in either an office-based business or a clerical class code have remote-friendly jobs. The share rises to about three-fourths for workers who fall into both categories. Very few workers who fall outside both of these groups have remote-friendly jobs.
- These two categories of workers account for over half of all workers compensation payroll but only 11% of workers compensation premium.
- Remote-friendly work is associated with significant frequency declines in the last five years. The impact of remote
 work on overall workers compensation frequency is small because such workers represent a small share of
 overall premium.
- The prevalence of remote work has been mostly stable since the end of 2021, with a relatively small amount of
 net return to office since then. However, it is not yet clear whether the workers compensation system has fully
 adjusted to the potential impacts of remote work.

© 2025 National Council on Compensation Insurance, Inc. All Rights Reserved.

THE RESEARCH ARTICLES AND CONTENT DISTRIBUTED BY NCCI ARE PROVIDED FOR GENERAL INFORMATIONAL PURPOSES ONLY AND ARE PROVIDED "AS IS." NCCI DOES NOT GUARANTEE THEIR ACCURACY OR COMPLETENESS NOR DOES NCCI ASSUME ANY LIABILITY THAT MAY RESULT IN YOUR RELIANCE UPON SUCH INFORMATION. NCCI EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES OF ANY KIND INCLUDING ALL EXPRESS, STATUTORY AND IMPLIED WARRANTIES INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

INTRODUCTION AND BACKGROUND

The purpose of this paper is to describe the impact of increased remote work on workers compensation (WC). The COVID-19 pandemic led to a mass increase in remote work and a substantial share of that change has remained permanent. How has WC frequency changed as a result and where do we see the largest effects?


Data on remote work was relatively sparse before the pandemic. Two widely cited sources for pre-pandemic remote work are the American Time Use Survey (ATUS) and the American Community Survey (ACS). The ATUS estimated about 7% of full-time workers were primarily working from home in 2019, compared to about 4% a decade before. ACS estimates show an upward trend as well but started from an even lower base estimate of remote work prevalence, around 4% in 2019. This ACS statistic represents respondents who answered "worked from home" to a question about mode of transportation to work—illustrating that even in the historical data we have, measuring work from home was not a central purpose of the data collection.

The share of remote workers changed with the onset of the pandemic and so did interest in measuring them. Exhibit 1 shows the estimated remote work share in recent years from the Survey of Working Arrangements and Attitudes (SWAA).² By the SWAA estimate, most workdays were remote in early 2020 and today, nearly 30% of workdays are remote.

Other mainstream estimates are lower but directionally similar. For example, the latest data from the Current Population Survey estimates that 22% of workers worked some or all days from home in the survey reference week.³ This discrepancy may reflect technical differences, such as differences in collection methods or how part-time or off-and-on workers are counted, but these sources agree that there is dramatically more remote work now than before the pandemic.

Exhibit 1: Work From Home Has Stabilized Post Pandemic

Share of Paid Full Days Worked From Home 100%

Source: Barrero, Jose Maria, Nicholas Bloom, and Steven J. Davis, 2021. "Why working from home will stick," National Bureau of Economic Research Working Paper 28731

¹ See, for example, the Pabilonia and Vernon, 2024, "Remote Work, Wages, and Hours Worked in the United States," BLS Working Paper 565 (www.bls.gov/osmr/research-papers/2023/pdf/ec230050.pdf)

² SWAA data is available at wfhresearch.com and is explained in Barrero, Jose Maria, Nicholas Bloom, and Steven J. Davis, 2021.

[&]quot;Why working from home will stick," National Bureau of Economic Research Working Paper 28731

³ Current Population Survey, Table A-41. People at work by telework status and selected characteristics, July 2025, (www.bls.gov/web/empsit/cpseea41.htm)

Remote work also varies widely across occupations, sectors and class codes. In the following section, we will estimate how remote-friendly different types of jobs are to assess potential impacts on WC frequency. Next, we will show how frequency changes over the last few years correspond to remote-friendliness of occupations. Finally, we share regression results from a model relating frequency to remote work.

DATA AND DEFINITIONS

Data Sources

To analyze the impact of changes in remote work, we leveraged remote-friendly occupation estimates derived from the following sources:

- National Council on Compensation Insurance (NCCI)—Policy Data and Statistical Plan for Workers Compensation and Employers Liability
- National Center for O*NET Development (O*NET)—Work Context
- Bureau of Labor Statistics (BLS)—Telework Survey
- Bureau of Labor Statistics (BLS)—Occupational Employment and Wage Statistics (OEWS)

We use NCCl's Statistical Plan data for claim counts, exposure, and class and industry detail and supplement this data with estimates of remote-friendly work derived from external datasets. We use the O*Net data to estimate remote-friendliness of occupations, the Telework Survey to verify that our estimates match high-level aggregates of remote work shares, and OEWS data to translate these estimates to NCCl class codes. We outline our procedure below and include additional data details in an Appendix.

Estimating Remote-Friendliness

We reviewed occupations in the O*NET dataset to identify those with high potential for remote work. We selected a set of eight work context elements from O*NET to operationalize the concept:

- Indoors, Environmentally Controlled
- Spend Time Sitting
- Exposed to Hazardous Equipment
- Exposed to Hazardous Conditions
- In an Open Vehicle or Equipment
- In an Enclosed Vehicle or Equipment
- Outdoors, Exposed to Weather
- Physical Proximity

We use O*NET survey scores of how often workers in each occupation work in the contexts above. We score occupations with high average scores for "Indoors, Environmentally Controlled" and "Spend Time Sitting" as more conducive to remote work. Conversely, occupations with low scores for the remaining six elements are more remote-friendly.

We classified an occupation as remote-friendly if average scores exceeded acceptable thresholds for most of the eight elements. We manually reviewed occupations near the cutoff point, reassigning them if detailed occupation descriptions and supplementary O*NET data suggested an occupation was more or less remote-friendly than indicated from the numeric scores. In practice, these manual decisions make almost no difference to our analysis. This is because most remote-friendly workers belong to occupations that score as remote-friendly across all eight elements.

We validated our categorization by determining the total share of workers and payroll in what we defined as remote-friendly occupations using the OEWS employment count and wage estimates. We then compared these estimates of remote-friendliness at the two-digit Standard Occupational Classification (SOC) code to occupation-level remote work estimates from the Bureau of Labor Statistics (BLS) Telework Survey. Results of this comparison are shown in Exhibit 2.

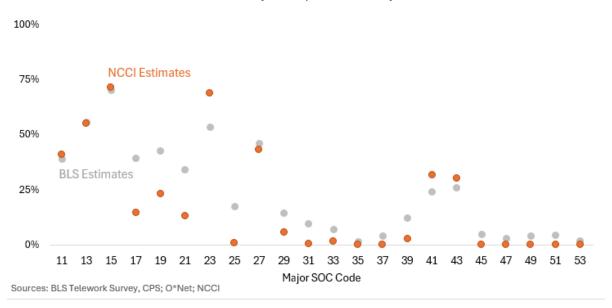


Exhibit 2: Estimated Remote-Friendliness by Occupation Closely Matches Actual Remote Work Share

Our estimate of remote-friendliness by occupation aligns well with BLS survey results, though we expect some variation between NCCI's O*NET-based estimates and the BLS Telework Survey data. The telework survey reflects actual telework status reported by workers, whereas the O*NET-based approach classifies an entire occupation as remote-friendly if it meets specific criteria, regardless of current telework adoption.

Translating Occupation Remote-Friendliness to Class Codes

We estimated the share of payroll associated with remote-friendly work within the WC system using a two-step process. The main goal of this process is to translate our occupation-level flags to NCCI class codes so that we can relate remote-friendliness to WC metrics compiled from NCCI data.

The first step is direct mapping, used when there was a clear and specific correspondence between an occupation and a class code. For example, the occupation of roofers (SOC 47-2180) corresponds to NCCI roofing Class Code 5551. In such cases, we simply assign the remote-friendliness of the occupation to the associated class code. Of course, in our example, roofing is not remote-friendly.

The second step is indirect mapping designed for more broadly defined class codes. In particular, standard exception class codes (e.g., clerical office employees 8810, outside salespersons 8742) are used across a wide range of policies and are not tied to the business's primary operation. Instead, these class codes capture specific roles of workers within their organization. Such roles are present in a variety of occupations and thus the remote friendliness of standard exception codes can vary significantly depending on the industry in which they are used.

To more accurately reflect the diversity of remote work exposure embedded in broadly defined class codes—including standard exception codes—we identified the occupations that could potentially be assigned to these codes for WC. Many of these occupations were flagged as remote-friendly using our estimation procedure, but others were not.

We then use North American Industry Classification System (NAICS) codes reported on NCCI Policy Data in concert with the OEWS occupation-industry matrix to separately estimate the share of payroll by occupation and industry. Different distributions of occupations within broadly defined NCCI class codes mean that the remote-friendliness of standard exception codes will differ across industries. For example, we estimate that a greater share of 8810 jobs are remote-friendly in professional and business services than 8810 jobs in construction.

RESULTS

Class Codes, Remote Work, and Frequency Changes

Before we show model results, we review the actual frequency changes for different types of workers over the last several years. If remote work had a major impact on frequency changes, we should observe differing frequency trends between jobs that have significant shares of remote workers and those that do not.

Remote-Friendly Jobs: Defining the Combined Office Sector and Special Class Codes

We classify workers using two major kinds of distinctions: by NAICS industry and NCCI class code. For industry, we define a Combined Office sector to mean NAICS sectors 51–55, encompassing Information, Financial Activities, and most of Professional and Business Services. These sectors all contain a large share of office workers and are the most remote-friendly sectors of the economy.

For class code, we focus on five Special Classes:

- 8810, Clerical Office Employees NOC
- 8871, Clerical Telecommuter Employees
- 8742, Salespersons or Collectors
- 8723, Insurance Companies
- 8855, Banks and Trust Companies

The first three of these are standard exception codes. They often represent back office, clerical, and sales employees of businesses that are primarily engaged in nonoffice work, such as the accounting staff of manufacturing plants. They are also sometimes used for policies whose operations are entirely office or clerical in nature, if the business is not covered by a more specific class code.

For this study, we group 8723 and 8855 with the standard exceptions. These large classes represent banks and insurers, businesses that employ a lot of remote and in-person office workers but do not qualify for the statistical reporting exception codes 8810 or 8871. For example, NCCI's employees, including the authors of this paper, are classified under code 8723.

Both these groupings are intended to capture office work that is potentially able to be done remotely. Most remote and hybrid employees fall into one of three categories:

- Work for office-based businesses, which would fall into the Combined Office sector
- Work office or clerical jobs in other types of businesses, which would qualify as standard exception payroll and fall into one of the Special Classes
- Work as office and clerical workers in primarily office-based businesses, which would fall into both categories

Armed with these definitions, we can now answer three key questions:

- How much of the Combined Office sector or Special Classes payroll do we estimate is remote-friendly?
- How much of all WC payroll and premium falls into one or both of these categories?
- How have frequency patterns differed in these categories compared to all other work?

Remote-Friendliness and Size of the Combined Office Sector and Special Class Codes

Exhibit 3 shows the estimated share of payroll in each of these categories we classified as remote-friendly, using the definitions we laid out in the previous section. About half of payroll that falls into either the Combined Office sector or a Special Class is remote-friendly. For payroll associated with both designations, the share is closer to three-fourths. Very few workers who do not fall into either of these categories have remote-friendly jobs.

Exhibit 3: Remote-Friendly Payroll Share by Class and Sector

	Special Classes	Other Classes
Combined Office Sector	73%	45%
Other Sectors	51%	1%

Next, we show the share of payroll and premium in each of these categories. Exhibit 4 shows that more than half of all payroll reported to NCCI falls into either the Combined Office sector (9%), one of the Special Classes (25%), or both (19%). However, since these jobs tend to have low loss costs, the amount of *premium* in one of these categories is much smaller. In contrast to payroll, only 11% of premium falls into one of the defined categories and only 2% falls into their intersection, much lower than the corresponding 53% and 19% of payroll, respectively.

Payroll 47% 25% 9% 19%

Premium 89% 6%

0% 25% 50% 75% 100%

Exhibit 4: Payroll and Premium Shares by Category

This is a key insight to keep in mind as we present our results. Remote work has been a massive change to the US work environment, but it has a limited impact on WC. While remote work may have large impacts where it is feasible, almost all remote-friendly jobs fall into categories that collectively make up 11% of total WC premium.

The bulk of injuries and losses come from construction, manufacturing, transportation, warehousing, resource extraction, health care, food service, or retail jobs—jobs that almost always require in-person presence at a work site.

Frequency Change for the Combined Office Sector and Special Classes

Overall, WC frequency declined significantly between 2019 and 2020, increased from 2020 to 2021, and decreased again to approximately 2020 levels in 2022. This pattern can be seen in the following exhibits and has been discussed in prior NCCI publications such as the annual State of the Line reports and our industry drilldown.

Pandemic-related disruptions introduced volatility but no clear, permanent change in frequency trends. However, there is still room for remote work to have affected WC results. As discussed above, most WC premium is collected for jobs that cannot be done remotely. Perhaps large effects for remote workers are overshadowed by relatively

unchanging trends for in-person work environments. In this section, we break out different types of work and show that indeed, frequency patterns for remote-friendly jobs diverged significantly from those in all other classes and sectors.

COMBINED OFFICE SECTOR

Exhibit 5 shows that the frequency decline from 2015–2019 was similar in the Combined Office sector to all others, but since the pandemic (and the rise of remote work), the patterns have diverged. Frequency in 2019 is normalized to 100 and the other numbers are a cumulative decline from that point, For Combined Office, the 2020 frequency decline of 15% (from 100 to 85) was about twice as large as in other sectors and this differential continues to persist through the preliminary data for 2023. This is our first piece of evidence that remote-friendly jobs show larger frequency declines than others in recent years.

Frequency by Sector, 100 = 2019 125 All Other Sectors 100 92 Combined Office Sector 75 50 2015 2017 2019 2020 2021 2022 2023p 2016 2018 2023p: values for 2023 are preliminary

Exhibit 5: Combined Office Sector Frequency Fell More Than It Did in Other Sectors

SPECIAL CLASSES

The story is similar but more striking for Special Classes. After a similar pre-pandemic pattern of frequency changes, the 2020 frequency decline for Special Classes of 26% was even larger than the 15% we saw for Combined Office.

As seen in Exhibit 6, these Special Classes did not experience the same rise-and-fall pattern in 2021 and 2022 that was seen for other classes or even the Combined Office sector. Rather, the frequency for Special Classes in 2021 and 2022 was slightly higher than in 2020, although the cumulative change from 2019 remained dramatically lower than for all other classes. This is consistent with the possibility of large remote work impacts, since remote work share was highest in 2020 before a partial return to office in 2021 and beyond.

The preliminary estimates for 2023 suggest an increase in Special Class frequency, which nearly closes the gap between the cumulative declines since 2019 of these classes and all others. However, this analysis masks an interesting difference between two types of Special Class workers, which we will discuss next.

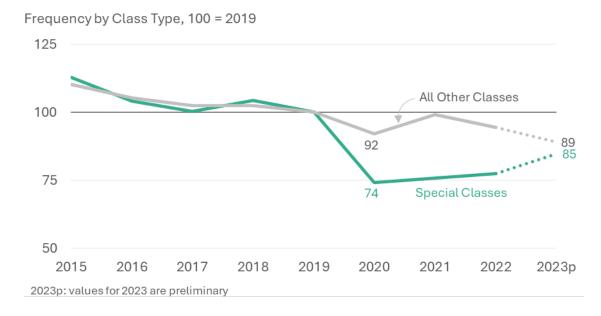


Exhibit 6: Special Classes Frequency Fell Much More Than Others

COMBINED OFFICE SECTOR AND SPECIAL CLASSES

Exhibit 7 divides Special Classes into two groups based on the sector where the jobs are conducted. Here we focus only on those workers performing jobs captured in the Special Classes (the green line in Exhibit 6) and split only those workers between those on policies in the Combined Office versus all other sectors (as in Exhibit 5). These two groups of Special Class workers show very different frequency patterns.

Those Special Class workers in the Combined Office sector—who are the most likely to work remotely—experienced much larger and more persisent frequency declines than those who work in businesses with a different type of primary operation. The former group's frequency (blue line) fell 40% in 2020 and has remained flat since. For the rest (gray line), frequency fell only half as much (19%) and increased in 2021, 2022, and again with the preliminary estimate for 2023.

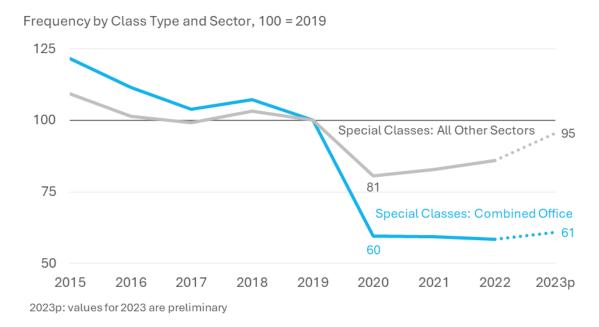


Exhibit 7: Frequency Fell Most in Special Classes Within the Combined Office Sector

The diverging pattern in Exhibit 7 may be a result of two differences between these types of workers. First, clerical workers are more likely to be allowed to work remotely at businesses where most of their colleagues can do the same. In general, the blue line above represents workers in completely remote-friendly businesses, whereas the gray line represents office and clerical workers whose colleagues have a necessary in-person element to their jobs.

Second, these workers (and businesses) tend to have different hazards regardless of remote work. Previous NCCI research has found differences in claim frequency within 8810 depending on the governing class code of the policy.4 The figure above suggests that this heterogeneity for clerical workers resulted in not only different levels of frequency, but different frequency changes in the post-pandemic period—changes that are likely related to remote work.

9

⁴ Arnautovic, Nedzad, 2022, "Heterogeneity of Office and Clerical Classifications," NCCI Research Brief, (www.ncci.com/Articles/Documents/Heterogeneity-Office-Clerical-Classifications.pdf)

Modeling Strategy and Results

Our modeling approach relates the frequency of WC claims each year in a particular state, class, and industry to the estimated share of remote-friendly workers. The basic estimating equation is shown below. We allow for frequency to differ by class c, NAICS four-digit industry i, state s, time trend from year t, the estimated share of remote work, and include a random error term $\mathcal E$. The primary coefficient of interest is the δ_{remote} coefficient for the remote work share, which estimates the difference in log frequency between remote-friendly and remote-unfriendly work.

$$\ln(Claims_{cist}/Exposure_{cist}) = \ln(Freq_{cist}) = \delta_c + \delta_s + \delta_t * t + \delta_{remote} * ShareRemote_{cit} + \varepsilon_{cist}$$

In the following section, we will show a variety of results.

- First, we will show a higher share of remote work is associated with lower frequency. Further, these results are not sensitive to different choices about our sample (claim type and exposure base) or our model specification.
- Next, we will show that the strength of the relationship between remote work shares and frequency is stronger for certain causes of injury and for certain types of work. In particular, we find that the association is strongest for workers in Special Classes in the Combined Office sector, consistent with the raw frequency changes shown in the previous section.

Regression Results

BASELINE SPECIFICATION

First, we run the baseline model using the remote-friendly measure defined earlier in the paper, along with an indicator for the period 2020, and later as our share of remote work. This means that we are not measuring the relationship between frequency and actual remote work, but rather between frequency and a proxy that measures the potential for remote work. Remote work shares were small before the pandemic, supporting our definition of work in 2019 and before as primarily not remote-friendly for estimation purposes.

Our baseline estimate of δ_{remote} is -0.421. This translates to saying that in the post-2020 period, a fully remote-friendly class will have about 34% lower frequency than a class that is not remote-friendly, all else equal (since this is a log scale, $e^{-0.421}-1\approx -0.34$).

As shown in Exhibit 8, this finding is robust to changes to the sample or our specification. Under various permutations of the primary specification, we continue to find an estimated frequency decline of about 30–40%.

Our estimated frequency decline is slightly larger when including med-only claims, which may suggest that remote workers are less likely to file a WC claim for incidents that result in medical treatment but no indemnity payments. The estimated frequency decline is somewhat lower when including our partial year of data for 2023. This may suggest that the relationship between remote work and frequency is becoming weaker over time, but this is uncertain given the incompleteness of the data. We will watch this relationship in future years.

Exhibit 8: Regression Results

	δ_{remote}	Freq. Change
Baseline Model: 2015–2022	-0.421	-34%
Frequency Per Payroll	-0.427	-35%
Includes Med-Only	-0.527	-41%
Non-Linear Time Trend	-0.411	-34%
Different Time Trend for Remote-Friendly	-0.429	-35%
Time Period 2015–2023	-0.347	-29%
Time Period Excludes 2020	-0.386	-32%
Time Period 2017–2022	-0.380	-32%

CAUSE OF INJURY

Next, we look at the relationship between remote-friendly work and frequency by cause of injury. In this section, we define four major injury causes: slip and falls, motor vehicle accidents (MVAs), strains, and contact. The contact category includes the caught on, cut by, struck by, and rubbed against causes of injury. A small number of injuries that do not fall into any of these categories, such as burns, are not used in this section.

Exhibit 9 shows that remote-friendly work is associated with frequency declines in all four main causes of injury, with the largest estimates for slip and falls and MVAs. This means that remote-friendly jobs had larger declines in slip and fall and motor vehicle injuries than strain and contact injuries, which is in addition to the fact that the baseline likelihood of strain and contact injuries is much higher in physically intensive (and remote-unfriendly) jobs such as construction than in office jobs.

Exhibit 9: Frequency by Cause of Injury

	$oldsymbol{\delta_{remote}}$	Freq. Change
Slip and Fall	-0.691	-50%
MVA	-0.581	-44%
Strain	-0.305	-26%
Contact	-0.168	-15%

TYPE OF WORK

We next show results by sector and class. Exhibit 10 shows results for four groups of exposure: workers in both the Combined Office Sector and Special Classes, workers in the Combined Office Sector or Special Classes (but not both), and all other workers.

The estimated effect of remote-friendly work on frequency is largest for workers in Special Classes in the Combined Office sector. For this group we estimate 62% lower frequency for fully remote-friendly jobs versus fully remote-unfriendly jobs.

This estimate reflects differing shares of remote-friendliness by industry within these Special Classes and by subsector within Combined Office. For instance, we estimate that the accounting, law, and computer systems subsectors are much more remote-friendly than architecture and engineering. These more remote-friendly subsectors within Combined Office experienced larger frequency declines than the others in recent years, leading to our estimated impacts of remote-friendly work within Combined Office. In other words, even within Special Classes and the Combined Office sector, we estimate that frequency declined most in the jobs that have experienced the largest shifts to remote work since 2020. Estimated effects are smaller for jobs that are not in both Combined Office and Special Classes.

Exhibit 10: Frequency by Sector and Class

	δ_{remote}	Est. Freq. Change
Office + Special	-0.961	-62%
Combined Office (Only)	-0.301	-26%
Special Class (Only)	-0.140	-10%
All Other	0.069	+8%

These estimated frequency changes highlight how the potential for remote work affects injury frequency differently depending on both the worker's role in their business and the broader industry context. It also reinforces why the impact of shifts in remote work shares is difficult to spot in overall WC statistics: the biggest impacts are for a particular group of white-collar workers who comprise just 2% of all premium.

DISCUSSION AND CONCLUSION

Remote work is a major shift to US work patterns. Estimates differ on the exact number of remote workers, but they range from 20–30% of all workers, up from 4–7% before the pandemic.

Changes in the workforce and work environment can have an impact on WC. Indeed, we find strong evidence that more remote-friendly jobs are associated with lower frequency. In raw frequency data, we observe a 40% decline in frequency for Special Classes in the Combined Office sector, with smaller but still meaningful deviations from overall trends for workers who fall into only one of those categories. Using regression analysis to account for more nuanced differences between classes and sectors, we estimate large effects, especially for office workers in special classes.

However, the focus on such exposure puts an upper bound on the overall impact of remote work on WC frequency. While office workers in Special Classes comprise a meaningful fraction of the US labor force, they represent a small fraction of total WC premium and generate a small share of WC losses.

Workers who are either in the Combined Office sector or in a Special Class make up a slight majority of payroll as reported to NCCI, but just one-tenth of the premium. Workers in both groups make up even less: around 20% of payroll but only 2% of premium. Thus, even a large change in frequency among such workers will only lead to a small change in overall frequency patterns. This may explain why, despite the large shift in work environments, remote work has had a modest impact on overall WC trends.

APPENDIX

To examine how the increase in remote work in recent years may have influenced WC claim frequency, this study uses NCCI's Statistical Plan data, which provides detailed policy and class-level information on exposures and reported claims at first report across all states where NCCI provides ratemaking services.

We define claim frequency as the number of lost-time claims per \$1 million of adjusted pure premium. Pure premium is calculated by applying the latest approved pure loss costs to wage-adjusted payroll, with wage adjustments based on data from the Bureau of Labor Statistics' Quarterly Census of Employment and Wages. Exposures are attributed to calendar years using audited payroll data, following an exposure-year framework consistent with NCCI's standard frequency methodologies.

We use data subject to the following limitations:

- Includes first-report claims from Accident Years 2015–2022, plus partial-year data for Accident Year 2023.
- Covers the following states: AL, AR, AZ, CO, CT, FL, GA, IA, ID, IL, IN, KS, KY, LA, MD, ME, MO, MS, MT, NE, NH, NM, NV, OK, OR, RI, SC, SD, TN, TX, UT, VA, VT, and WV.
- North Carolina data includes only policies submitted to NCCI as part of interstate risks.
- Excludes COVID-19 claims, federal and per capita class codes, class codes with non-standard exposures, policies with data grade 5 (lowest quality), and certain coal mining classes.
- Industry classifications are based on NAICS when available; otherwise, the Standard Industrial Classification (SIC) codes are used, which may reduce precision in some cases when identifying the workplace environment.

The dataset contains more than 10 million claims across eight years and a wide range of industries. In addition to analyzing overall claim frequency, the structure of the data allowed us to examine trends by cause of injury, helping to assess how shifts in the prevalence of remote work may relate to the nature and frequency of workplace injuries.

We use this proprietary dataset in concert with external data sources.

The OEWS dataset provides employment counts and mean annual wages by occupation and industry, including NAICS codes at the three- and four-digit levels. Occupations are classified using six-digit SOC codes or OEWS-specific codes. The dataset includes aggregation across major, minor, broad, and detailed SOC levels, along with an all-occupations total. This information enables calculation of the remote-friendly occupation share across varying levels of occupational and industrial detail.

The O*NET database contains detailed descriptors of job characteristics. For this analysis, we used the Work Context section, which captures physical and social factors affecting how work is performed. These variables were used to identify occupations likely to be remote-friendly based on workplace characteristics.

The BLS Telework Survey, specifically Table 2, provides the share of employed individuals by telework status, usual full- or part-time status, occupation, industry, and class of worker. Occupations are reported at the major group level. These data offer a point of comparison to validate or contextualize the remote-friendly estimates derived from O*NET and OEWS.